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ABSTRACT
Recent work with NASA’s Jet Propulsion Laboratory has allowed
for external access to five of JPL’s real-world requirements mod-
els, anonymized to conceal proprietary information, but retaining
their computational nature. Experimentation with these models,
reported herein, demonstrates a dramatic speedup in the computa-
tions performed on them.

These models have a well defined goal: select mitigations that
retire risks which, in turn, increases the number of attainable re-
quirements. Such a non-linear optimization is a well-studied prob-
lem. However identification of not only (a) the optimal solution(s)
but also (b) the key factors leading to them is less well studied.
Our technique, called KEYS, shows a rapid way of simultaneously
identifying the solutions and their key factors.

KEYS improves on prior work by several orders of magnitude.
Prior experiments with simulated annealing or treatment learning
took tens of minutes to hours to terminate. KEYS runs much faster
than that; e.g for one model, KEYS ran 13,000 times faster than
treatment learning (40 minutes versus 0.18 seconds).

Processing these JPL models is a non-linear optimization prob-
lem: the fewest mitigations must be selected while achieving the
most requirements. Non-linear optimization is a well studied prob-
lem. With this paper, we challenge other members of the PROMISE
community to improve on our results with other techniques.

1. INTRODUCTION
Design, said Herbert Simon, is the quintessential human activ-

ity [32]. A design optimization method could be used in many
domains; software or building construction, car manufacturing, air-
craft flight planning, just to name a few. As Simon says “Engineer-
ing, medicine, business, architecture and painting are concerned
not with the necessary but with the contingent - not with how things
are but with how they might be - in short, with design”.
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Model-based design is becoming increasingly important for soft-
ware engineering. Sendall and Kozacaynski argue that increasing
productivity and reduced time-to-market for software products can
accrue when “using concepts closer to the problem domain ..." via
modeling [31]. Hailpern and Tarr observe that model-driven devel-
opment “imposes structure and common vocabularies so that arti-
facts are useful for their main purpose in their particular stage in
the life cycle” [2].

Numerous large organizations now have active model-based SE
teams such as Microsoft’s Software Factory [16]; Lockheed mar-
tin’s Model Centric Software Development [33]; the Object Man-
agement Group’s Common Warehouse Metamodel [5]; and the DDP
work at NASA’s Jet Propulsion Laboratory [14]. Such models can
be queried to find combinations of options that might be otherwise
missed. For example, with DDP, the goal is a non-linear optimiza-
tion that seeks the least costly project options that most increases
the chance of attaining more requirements.

Paradoxically, our prior successes [14, 15, 25] with DDP has
caused a problem. Our user community now expects an automatic
model-based cost-benefit analysis for larger and larger JPL models
containing more variants. Extrapolating into the near future, we ex-
pect to fall off a computational cliff where our models will be too
complex for automatic analysis.

Accordingly, we explore optimizations for model-based design.
Prior experiments with simulated annealing [14] or treatment learn-
ing [15] terminated in minutes to hours. Our new method, called
“KEYS”, runs much faster; e.g for one model, KEYS ran 13,000
times faster than treatment learning (40 minutes to 0.18 secs).

The rest of this paper described JPL’s DDP modeling systems;
our prior work; the new KEYS algorithm; and experiments with
KEYS on five DDP models. The intent of this paper is to promote
more repeatable experiments in model-based SE. Our models are
now available in the PROMISE repository1. This paper will be
a success if other researchers try alternate methods to find better
solutions for the DDP models, or the same solutions in less time.

2. DDP: SOFTWARE SYSTEMS DESIGN
At JPL, the “Defect Detection and Prevention (DDP)” tool [9,14]

is in use to organize interactive knowledge acquisition and decision
making sessions with spacecraft experts. The DDP tool provides
an ontology for representing these requirements, risks, and mitiga-
tions, and for reasoning about them.

DDP might be thought of as akin to the mainstream decision sup-
port approach Quality Function Deployment (QFD) [1], but with a
quantitative, probabilistic basis inspired by risk assessment tech-

1That is, they will be available in time for PROMISE’08. For now,
they may be viewed at http://unbox.org/wisp/tags/
keys/1.0 (see the model?.c files).



DDP assertions are either:

• Requirements (free text) describing the objectives and con-
straints of the mission and its development process;

• Weights (numbers) associated with requirements, reflecting
their relative importance;

• Risks (free text) are events that damage requirements;
• Mitigations: (free text) are actions that reduce risks;
• Costs: (numbers) effort associated with mitigations, and re-

pair costs for correcting Risks detected by Mitigations;
• Mappings: directed edges between requirements, mitiga-

tions, and risks that capture quantitative relationships among
them. The key ones are impacts, each one of which is a quan-
titative estimate of the proportion of a requirement that would
be lost should a risk occur, and effects, each one of which is a
quantitative estimate of the proportion by which a risk would
be reduced were a mitigation to be employed (the ontology is
also able to capture the phenomenon of a mitigation making
some risks worse).

• Part-of relations structure the collections of requirements,
risks and mitigations;

Figure 1: DDP’s ontology

niques. This novel combination places it in a sparsely populated
niche in decision making techniques. We believe this is why DDP
is useful for studying the requirements needs of a wide variety
of technologies, software, hardware and combinations of the two.
Quality requirements feature prominently during these studies. DDP
takes such requirements into consideration by relating them to “risks”
(used very generally to represent all the factors that have the poten-
tial to impede the requirements attainment). Then, DDP’s support
for locating cost-effective risk “mitigation” options can be applied.
The net result is an approach that allows stakeholders to explore
alternatives among requirements the designs to meet them, and the
development approaches to follow, taking into account the costs of
those alternatives as they do so.

The process by which DDP is employed is as follows:

• 6 to 20 experts are gathered together for short, intensive knowl-
edge acquisition sessions (typically, 3 to 4 half-day sessions).
These sessions must be short since it is hard to gather to-
gether these experts for more than a very short period of time.

• The DDP tool supports a graphical interface for the rapid
entry of the assertions. Such rapid entry is essential, lest
using the tool slows up the debate.

• Assertions from the experts are expressed in using an ultra-
lightweight decision ontology (e.g. see Figure 1). The ontol-
ogy must be ultra-lightweight since:

– Only brief assertions can be collected in short knowl-
edge acquisition sessions.

– If the assertions get more elaborate, then experts may
be unable to understand technical arguments from out-
side their own field of expertise.

The result of these sessions is a network of influences connecting
project requirements to risks to possible mitigations; see Figure 2.

The ontology of Figure 1 may appear too weak for useful rea-
soning. However, in repeated sessions with DDP, it has been seen
that the ontology is rich enough to structure and guide debates be-
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to fault1, fault1 reduces the impact of require5, and action1 reduces
the negative impact of fault1.

Oval denotes structures that are expressible in the latest version of the JPL
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Figure 2: A semantic net of the type used at JPL

tween NASA experts. For example, DDP has been applied to over
a dozen applications to study advanced technologies such as

• a computer memory device;
• gyroscope design;
• software code generation;
• a low temperature experiments apparatus;
• an imaging device;
• circuit board like fabrication;
• micro electro-mechanical devices;
• a sun sensor;
• a motor controller;
• photonics; and
• interferometry.

In those studies, DDP sessions have led to cost savings exceeding
$1 million in at least two instances, and lesser amounts (exceed-
ing $100,000) in some others. The DDP sessions have also gener-
ated numerous design improvements such as savings of power or
mass, and shifting of risks from uncertain architectural ones to bet-
ter understood (and hence more predictable and manageable) de-
sign ones. Further, at these meetings, some non-obvious significant
risks have been identified and mitigated. Lastly, DDP can be used
to document the information and decision making of these studies.
Hence, DDP, although not mandated, remains in use at JPL:

• not only for its original purpose (group decision support);
• but also as a design rationale tool to document decisions.

Note that DDP is not just a software design tool. At JPL, soft-
ware and hardware are designed together. DDP is best viewed as a
software systems engineering tool where the interactions between
hardware and software can be quickly explored.



3. TREATMENT LEARNING
Discrete models (like DDP) have “cliffs” where the behavior of a

system can change dramatically. Such non-continuous models are
not suitable for numeric optimization. Hence, in our previous work,
we applied data mining to find the least cost set of mitigations that
lead to the greatest number of attainable requirements.

The data miner used on DDP was the TAR2 and TAR3 treatment
learners [7,8,14,15,17,19,23,25]. The premise of treatment learn-
ing is that within the space of possible decisions, there exist a small
number of key decisions that determine all others. The rest of this
section expands on this notion of keys, and their implications.

3.1 What are “keys”?
Imagine that a model supports chains of reasons that link inputs

to desired goals. Some links in the chain clash with others, and
some of those clashes are most upstream; i.e. are not dependent
on other clashes. In the following chains of reasoning the clashes
are {e¬e}, {g¬g} & {j,¬j}; item the most upstream clashes are
{e¬e}, & {g¬g},

a −→ b −→ c −→ d −→ e
input1 −→f −→ g −→ h −→ i −→ j −→ goal
input2 −→k → ¬g −→ l −→ m → ¬j −→ goal

n −→ o −→ p −→ q −→ ¬e

One way to optimizing decision making about this model would
be to first decide about the non-dependent clashing links. We call
these decisions the collars since, as we shall see, they have most
impact on the rest of the model.

For example, returning to the above reasoning chains, any of
{a, b, ..q} is subject to discussion. However, much of this model is
irrelevant to the task of inputi � goal. For example, the {e,¬e}
clash is not exercised in the context of since no reason uses e or
¬e. In the context of reaching some goal from inputi, the only
important discussions are the clashes {g,¬g, j,¬j}. Further, since
{j,¬j} are fully dependent on {g,¬g}, then the core decision must
be about variable g with two disputed values: true and false.

We call g the collar since it restricts everything else. The collar
may be internal to a model and so may not be directly controllable.
A model’s keys are the controllable variables that influence the
collar. In this example, those keys are inputi.

Using the keys to setting the collars reduces the number of
reachable states inside a model. Formally, the reachable states re-
duces to just the cross-product of all the ranges of the collars. We
call this the clumping effect; i.e. only a small fraction of the pos-
sible states are the reachable states. The effects of clumping can be
quite dramatic. Without knowledge of these chains and the collar,
the above model has 220 > 1, 000, 000 possible consistent states.
However, in the context of inputi � goal, those 1,000,000 states
clumps to just the following two states: {input1, f, g, h, i, j, goal}
or {input2, k,¬g, l, m,¬j, goal}.

3.2 Theoretical Evidence
Theoretically, clumps and collars are the expected average case

properties of any model. Menzies & Singh [28] computed the odds
of a system selecting solutions to goals using complex, or simpler,
sets of preconditions. In their simulations they found that, at a very
high probability, a system will naturally select for tiny sets of pre-
conditions (a.k.a. the keys).

Druzdel [13] represented a model as the product of distributions
of the model’s variables, Given enough variance in the individual
priors and conditional probabilities of the variables, the frequency
of model states will exhibit a log-normal distribution. Such a sys-
tem would be observed to clump; i.e. a small fraction of states to

cover a large portion of the total probability space, with the remain-
ing states having negligible probability.

3.3 Empirical Evidence
There is much empirical evidence for the validity of these the-

oretical predictions. Keys, collars and clumps have been widely
reported (albeit by different names). A sample of those empirical
results are offered below (for more, see [28]),

Keys: Numerous researchers have examined feature subset se-
lection; i.e. what happens when a data miner deliberately ignores
some of the variables in the training data. For example Kohavi and
John [22] showed that in numerous datasets, as few as 20% of the
variables are key- the remaining 80% of variables can be ignored
without degrading a learner’s classification accuracy.

Clumps: Druzdzel [13] studied one piece of software where the
reached states were a vanishingly small fraction of the set of possi-
ble states. In one diagnosis system with 525,312 possible internal
states, he found that only one state was ever reached 52% of the
time and only 49 states were reached 91% of the time.

Collars: Williams et.al. [34] discuss how to use keys (which they
call “back doors”) to optimize search. They showed that setting
the keys can reduce the solution time of some hard problems from
exponential to polytime- provided that the keys can be cheaply
located- an issue on which Williams et.al. are curiously silent.

3.4 Finding the keys
A traditional approach to key-based reasoning is to find the fun-

nels using some dependency-directed backtracking tool such as the
ATMS [11] or HT4 [24]. Dependency-directed backtracking is very
slow, both theoretically and in practice [24]. Further, in the pres-
ence of narrow collars, it may be unnecessary. There is no need to
search for the collar in order to exploit it. Any chain of reasoning to
goals must pass through the collars (by definition). Hence, all that
is required is to find variables that most influence the output score.

One way to find those most influential variables is the “lift”
heuristic implemented in the TAR3 treatment learner [19,26] using
a table of model output, each column being one input variable, and
each row being one run of the model. An extra column adds si; i.e.
the score assigned to the output of that run by some oracle function.
Assuming X rows, and that the scores coming from |c| discrete val-
ues with frequency ci, then this table has a weighted baseline score
of before =

Pc
i sici/X . A particular conjunction of variable val-

ues, called the treatment Rx can be used to select for some Y ≤ X
rows by rejecting all rows inconsistent with Rx. The scores in the
selected set contains |d| discrete values with frequency di. This

selected subset has a weighted sum of after =
Pd

i sidi/Y

The lift of Rx is after
before

. The most influential variables are
found in the treatments with most impact on improving the score
distributions; i.e. those with highest lift. To find those treatments:

1. TAR3 creates one treatment from all variable values;
2. These singleton treatments are sorted by lifts;
3. A cache is created to hold the best treatments;
4. A single rule of size Max is created by selecting randomly

from the sorted list of variable values, favoring those with
higher lift. Max is selected at random from 1 to some user-
specified maximum value.

5. If the new rule has a lift within the top M treatments, add it
to cache (and if the cache has now grown beyond size M ,
delete the worst lifting cached rule).

6. After creating N new rules, if cache has changed, goto 4.
7. Otherwise, return the cache of M best treatments.

Typical values for {Max, M, N} are {10, 10, 100}, respectively.



Formally, TAR3 is a stochastic minimal contrast learner for weighted
classes [3, 6]. TAR3 uses a stochastic algorithm since that scales
linearly on number of attributes and size of training set [19]. Also,
in a result consistent with the prevalence of keys, TAR3’s fast
stochastic search nearly always returns the same treatments as the
slower deterministic search of early versions of this algorithm [19].

3.5 Experiments with Treatment Learning

Figure 3: DDP results.

Figure 3 shows
one application of
TAR3 [15] on a
DDP models with
99 possible mitiga-
tions; i.e. 299 ≈
1030 possibilities.

After 10,000 ran-
dom selections of
the mitigations the
resulting costs (i.e.
sum cost of the
mitigations) and benefits
(i.e. number of
attained requirements)
are shown below the black line (top left) of Figure 3. All the
dots above this line represent high benefit, low-cost projects found
by iterative applications of treatment learning At each iteration,
researchers gave the simulator’s output to the treatment learner.
TAR3 scored these outputs using the distance of the associated
costs-benefits to the “sweet spot” of maximum benefits and min-
imum costs (the top left corner of Figure 3). Researchers then im-
posed the top treatment found by TAR3 found onto the simulator
for subsequent iterations.

In a result consistent with the DDP models having small keys,
TAR3 found 30 (out of 99) mitigations that crucially affected cost-
benefit. This means TAR3 also found 99 − 30 = 69 arbitrary
decisions that could be made with minimal software impact.

Greenwald [17] benchmarked TAR3 against simulated anneal-
ing [21]. TAR3 achieves the same cost-benefit point as simulated
annealing [21], but does so using ≈ 1

10
-th the evaluations and us-

ing ≈ 1
4

-th the constraints required by SA. Up until this current
paper, Greenwald’s results where the high-water mark in learning
mitigations for DDP models.

4. KEYS: A FASTER TAR3 FOR DDP
While TAR3 is a useful tool, Figure 3 took 40 minutes to gen-

erate. Ideally, our design advisors should run faster than designers
could change their models; i.e. orders of magnitude faster than
TAR3. Hence, we tried five techniques, discussed below: greedy
search, BORE, knowledge compilation, and some systems tricks.

4.1 Greedy Search
Step 6 of the TAR3 algorithm (described above) generates hun-

dreds of treatments, then prunes all but the best M . KEYS was an
experiment in building one rule per variable, with no post-pruning.
KEYS therefore runs much faster than TAR3.

KEYS searches a space of M mitigations in M “eras”. Initially,
mitigations are free to take any value. At each era, one more mitiga-
tion is set to Mi = Xj , Xj ∈ {true, false}. Each era e generates
a sets of < input, score > as follows:

1a: Selected[1. . .(e − 1)] are settings from previous eras.
1b: Guessed are randomly selected values for other mitigations.
1c: Input = selected ∪ guessed.

1d: Call DDP to compute score = ddp(input);

After 100 repeats of steps 1a,1b,1c,and 1d:

2: The 100 scores are divided into 10% best and 90% rest.
3: The mitigation values in the input sets are then scored using

BORE (described below).
4: The top ranked mitigation value becomes a setting to one

more mitigation and is stored in selected[e].

KEYS then moves to the era e+1 and repeats steps 1,2,3,4. KEYS
stops when all mitigations have settings.

KEYS slowest step is 1d; i.e. the call to DDP. For a model with
100 mitigations, this call is repeated 100*100=10,000 times. We
optimize step 1d using knowledge compilation (discussed below).

4.2 BORE = Best Or Rest
TAR3’s lift calculation is a heuristic measure with no theoretical

basis. It can favor treatments based on very small portions of the
training set. KEYS uses an alternative Bayesian ranking measure,
better founded in theory, and one that includes a support measure.

BORE [8] assumes that the output scores are divided into one
class for best outcomes and one for the rest. In such a two-class
systems, TAR3’s lift calculation can be replaced with a search for
mitigation values that have a high probability of belonging to best.

BORE divides numeric scores seen in K runs into best and rest,
storing the top 10% and the remaining 90% scores (respectively).
It then computes the probability that a value is found in best using
Bayes theorem. The theorem uses evidence E and a prior probabil-
ity P (H) for hypothesis H ∈ {best, rest}, to calculate a posteri-
ori probability P (H|E) = P (E|H)P (H) / P (E). Such simple
Bayes classifiers are often called “näive” since they assume inde-
pendence of each variable. Domingos and Pazzani show that the
independence assumption is a problem in a vanishingly small per-
cent of cases [12]. This explains the repeated empirical result that
seemingly näive Bayes classifiers perform as well as other more
sophisticated schemes (e.g. see Table 1 in [12]).

When applying the theorem, likelihoods are computed from ob-
served frequencies, then normalized to create probabilities (this
normalization cancels out P (E) in Bayes theorem). For example,
after K = 10, 000 runs divided into 1,000 best solutions and 9,000
rest, the value mitigation31 = false might appears 10 times in
the best solutions, but only 5 times in the rest. Hence:

E = (mitigation31 = false)

P (best) = 1000/10000 = 0.1

P (rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · P (best) = 0.001

like(rest|E) = freq(E|rest) · P (rest) = 0.000504

P (best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (1)

Previously [8] we have found that Bayes theorem is a poor ranking
heuristic since it is distracted by low frequency evidence. For ex-
ample, note how the probability of E belonging to the best class is
moderately high even though its support is very low; i.e. P (best|E) =
0.66 but freq(E|best) = 0.01.

To avoid such unreliable low frequency evidence, we augment
Equation 1 with a support term. Support should increase as the
frequency of a value increases, i.e. like(best|E) is a valid sup-
port measure. Hence, step 3 of our greedy search ranks values via

P (best|E) ∗ support(best|E) =
like(best|E)2

like(best|E) + like(rest|E)
(2)



4.3 Knowledge Compilation
In knowledge compilation, a theory is compiled off-line into a

target language, which is then used on-line to answer a large num-
ber of queries, very rapidly [10,30]. The motivation behind knowl-
edge compilation is to push as much of the computational overhead
into the off-line compilation phase, which is amortized over numer-
ous on-line queries; e.g. the thousands of calls to the DDP models
made by step 1d of the greedy search.

The SE and AI literature has thus far focused mostly on tar-
get compilation languages which are combinations of one or more
combinations of DNF/CNF formulas, state machines, or BDD [4,
10]. For our purposes, it was convenient not to use declarative
forms. Instead, our knowledge compiler outputs a “C” function.

This knowledge compiler computes and caches a flattened form
of the the DDP requirements tree. In standard DDP:

• Requirements form a tree;
• The relative influence of each leaf requirement is computed

via a depth-first search from the root down to the leaves.
• This computation is repeated each time the relative influence

of a requirement is required.

In our compiled form, the computation is performed once and added
as a constant to each reference of the requirement.

For example, here is a trivial DDP model where mitigation1
costs $10,000 to apply and each requirement is of equal value (100):

$10,000z }| {
mitigation1 →|{z}

0.9

risk1 →
* 0.1z}|{→ (requirement1 = 100)

→|{z}
0.99

(requirement2 = 100)

(The other numbers show the impact of mitigations on risks, and
risks on requirements).

Our knowledge compiler converts this trivial DDP model into the
model function of Figure 4. Note that The topology of the network
is represented as terms in equations at the bottom of the function.
As the topology grows more complex, so do these equations. For
example, our biggest model, containing 99 mitigations, generates
1412 lines of model.

The model function is called by step 1d of the greedy search
and an array of boolean mitigations m[]. It returns the total cost
of the selected mitigations (*cost) and the number of reachable
requirements (*att). These two scores are then normalized to
a single score s representing the distance to the “sweet spot” of
maximum benefits and minimum costs, as follows:

s = 1 −
q

((1 − cost)2 + att
2

√
2

Here, x is a normalized value 0 ≤ x−min(x)
max(x)−min(x)

≤ 1. Hence,

our scores ranges 0 ≤ s ≤ 1 and higher scores are better.
The form of Figure 4 is not optimal. Observe that all the com-

putation in lines 5 to 28 is always the same, regardless of what
values are passed in with the m[] array. Hence, in future ver-
sions of this tool, it might be wise to split the model function
into a model-setup function (that only gets called once) and a
model-run function that uses variables set up by model-setup.

This knowledge compiler is not just an algorithms optimization
tool. It is also a method that lets JPL retain proprietary information
while allowing researchers outside of JPL to access JPL models.
The resulting models are anonymized to conceal proprietary infor-
mation, while retaining their computational nature. In our experi-
ments, JPL ran the knowledge compiler and passed to West Virginia
University models like those shown in Figure 4. Consequently, JPL

1 #include "tool.h"
2
3 void model(float *cost, float *att, float m[])
4 {
5 float costTotal, attTotal;
6 int oCount = 2;
7 float oWeight[oCount+1];
8 float oAttainment[oCount+1];
9 float oAtRiskProp[oCount+1];

10 int rCount = 1;
11 float rAPL[rCount+1];
12 float rAggrevatedImpact[rCount+1];
13 float rLikelihood[rCount+1];
14 int mCount = 1;
15 int m[mCount+1];
16 float mCost[mCount+1];
18 float roImpact[rCount+1][oCount+1];
19 float mrEffect[mCount+1][rCount+1];
20 mCost[1] = 10000;
21 rAPL[1] =1;
22 rAggrevatedImpact[1]=1;
23 oWeight[1]=100;
24 oWeight[2]=100;
25 roImpact[1][1] = 0.1;
26 roImpact[1][2] = 0.99;
27 mrEffect[1][1] = 0.9;
28 rLikelihood[1] = rAPL[1];
29 /* Mitigation effects on Risk likelihoods */
30 rLikelihood[1] = rLikelihood[1] *
31 (1 - m[1] * mrEffect[1][1]);
32 /*Risk impacts on Objective attainment proportions*/
33 oAtRiskProp[1] = (rLikelihood[1] *
34 rAggrevatedImpact[1] * roImpact[1][1]);
35 oAtRiskProp[2] = (rLikelihood[1] *
36 rAggrevatedImpact[1] * roImpact[1][2]);
37 /* Objective attainments */
38 oAttainment[1] = oWeight[1] *
39 (1 - minValue(1, oAtRiskProp[1]));
40 oAttainment[2] = oWeight[2] *
41 (1 - minValue(1, oAtRiskProp[2]));
42 attTotal = oAttainment[1] + oAttainment[2];
43 costTotal = m[1] * mCost[1];
44
45 *cost = costTotal;
46 *att = attTotal;
47 }

Figure 4: A trivial DDP model

could assure its clients that their secrets were safe while, at the same
time, allowing researchers outside of JPL to perform experiments
like those shown in this paper.

4.4 Systems Tricks
The results of Figure 3 where generated using a Visual Basic

version of DDP and a “C” version of TAR3. These ran as sepa-
rate processes communicating via shell scripts and temporary files.
KEYS employs some systems tricks to optimize that rig.

KEYS runs a make file to build one “C” program containing the
greedy search, BORE, and the model generated by the knowledge
compiler. This single executable runs in RAM. Consequently:

• The slower Visual Basic code is replaced by faster “C” code;
• The learner and the model can communicate without time

consuming disc I/O.

5. RESULTS
KEYS was run on the five JPL requirements models. As shown

in Figure 5 models one and three were relatively small and were
used to debug KEYS. Models two, four, and five are more interest-



ing. Model 4 was discussed in [27] in detail. The largest, model5
was processed previously by DDP/TAR4 [15].

The cost-benefits obtained by KEYS were very similar to (or
better than) those found by simulated annealing and TAR3. Also,
KEYS found those solutions very quickly. KEYS’ runtimes (last
column of Figure 5) are quite fast: always less than a second, some-
times much less. Better yet, these times are much faster than with
TAR3. For example, TAR3 took 40 minutes to process model5 as
compared to KEYS’ 0.18 seconds ( 0.18

40∗60 ≈ 104 times faster).

Model LOC Objectives Risks Mitigations Run-Time*

model1.c 43 3 2 2 0.0018

model2.c 260 1 30 31 0.0139

model3.c 58 3 2 3 0.0019

model4.c 1226 50 31 58 0.0906

model5.c 1412 32 70 99 0.1751

*average over 100 runs (in seconds)

Figure 5: Details of Five DDP Models.

A typical run of KEYS is shown in Figure 6 (these are results
from model5). At era = 0, all mitigations are selected at random.
At each era after that, one more mitigation is set to true or false. The
upper/lower lines in each plot shows median/spread values seen
in 100 calls to model5 at each era. Here, “median” is the 50%
percentile value and “spread” is a measure of deviation around the
median (calculated as 75% percentile value - median). Note that the
deviations are quite small, compared to the median. That is, our
median estimates are good descriptions of the central tendencies
of these models. Also, KEYS reduced the cost while increasing the
attainment. Model5 was the exception: attainment remained steady
while the cost was greatly reduced.

In Figure 6, the improvements in cost are dramatic up until era=30,
after which improvements are much slower. If management wanted
a parsimonious set of mitigations, they could hence use the true/false
values in the mitigations from eras 0 to 30.
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Figure 6: KEYS running on model 5.

6. DISCUSSION
Perfection is achieved not when there is

nothing more to add, but rather when
there is nothing more to take away.

– Antoine de Saint-Exupéry

Our results call to mind the “simplicity-first” recommendations
of Holte [18]. Sophistication is superfluous if simpler methods per-
form as well as complex methods. Working with tree-based classi-
fication learners, Holte found that extremely small trees were often
as accurate as more complex trees. He hence cautioned the machine
learning community to benchmark their supposedly more sophisti-
cated algorithms against simpler alternatives.

This study has compared a simple method (KEYS) with a more
complex method (TAR3) for solving DDP problems. Not only were
the cost-benefit results competitive with (or better than) prior re-
sults but the simpler method ran orders of magnitude (104) times
faster than the complex one.

We attribute most of the success of KEYS to the presence of
keys in the DDP models; i.e. a small set of variables that set every-
thing else. These key variables were exploited using two methods:

1. BORE finds promising keys with high support;
2. KEYS’ greedy search sets the most promising key, before

exploring the remaining options;

We also employed three other methods:

3. Before we used Visual Basic and “C”. KEYS just uses “C”.
4. KEYS avoids the disk I/O needed by TAR3 talking to DDP.
5. Our knowledge compiler transforms the DDP requirements

tree into a set of equations that can be rapidly evaluated.

7. FUTURE WORK
It is unclear which of the above five factors was most influential

in speeding up KEYS. In future work, we would explore 25 = 32
variants of KEYS that disable some combination of the above five
methods.

It is important that KEYS runs faster. While the current tools
is certainly fast enough for most of the current generation of DDP
models, in the very near future, it needs to run much faster. As soon
as we give our users more elaborate model-based design tools, they
try to build more elaborate designs. Even the 104 fold increase in
the processing of model5 is not fast enough for some of the require-
ments models being generated today at JPL.

For example, often, families of models are proposed and model-
based design methods are asked to assess which subset of, say, 12
alternatives should be used. Allowing 0.2 seconds for each of these
212 models, this would take thirteen minutes to process. Ideally,
we seek two second response time (or less) in order to keep up with
interactive design discussions. That is, we need at least to run at
least 1000 times faster, just to keep up some of the larger design
discussions we plan to support in the near future.

Also, if we want to scale KEYS to more models with a more
complex ontology, then some modifications may be required. This
paper has shown that KEYS has promise for models with binary
variables. However, in other work, we have seen disappointing re-
sults with models containing variables with much larger ranges.

One approach to speeding up KEYS is to do as much work as
possible before the model is run. In §4.3, there was some com-
ment along those lines (recall the discussion on splitting the model
function into model-setup and model-run).



More generally, there might be a better internal format for the
model than “C”. The latest generation of stochastic SAT solvers
(e.g. MAXWALKSAT [20] or the optimized Markov Logic reason-
ing within ALCHEMY [29]) use conjunctive normal form. KEYS
could be a useful sub-routine of these stochastic tools. For example,
stochastic algorithms like MAXWALKSAT and the optimizations
inside ALCHEMY all make random choices. Perhaps KEYS could
be used to bias random choices towards values that might be part of
the keys. The effects of such an optimization could be dramatic-
recall from the above discussion that Williams et.al. [34] report that
setting “back doors” (the keys) can reduce the solution time of hard
problems from exponential time to polytime.

8. SUMMARY
In this work we have:

• Described five public-domain real-world requirements mod-
els, stored in the PROMISE repository;

• Showed how new methods (KEYS) improve on older ones
(TAR3);

• Defined baseline results on the new methods (see Figure 5);
• Proposed a challenge problem for improving these methods

(three orders of magnitude faster than Figure 5).
• Offered some suggestions on how to meet that challenge (stochas-

tic search methods like MAXWALKSAT or ALCHEMY, pos-
sibly augmented by KEYS to better bias their random selec-
tions).

We would welcome collaborations with the PROMISE community
on methods to speed up solutions to DDP optimization problem.

Finally, all the software used in this study is free for download
and use2. We recommend that, where possible, other PROMISE
authors offer their results in such a repeatable and improve-able
manner.
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